A Novel Use of Kernel Discriminant Analysis as a Higher-Order Side-Channel Distinguisher

Xinping Zhou1, Carolyn Whitnall2, Elisabeth Oswald2, Degang Sun1 and Zhu Wang1

1Chinese Academy of Sciences
2University of Bristol

CARDIS 2017, Lugano, Switzerland
14th November 2017
Outline

1. Introduction
2. Preliminary
3. Methodology
4. Discussion
5. Conclusions and Future Perspectives
Introduction

KDA as a Higher-Order Side-Channel Distinguisher
Introduction

$L(k, x; r)$

A \xrightarrow{x} y \xrightarrow{O} k

KDA as a Higher-Order Side-Channel Distinguisher
Differential side channel

Secret key k^*

Device

$L(F_{k^*}(X)) + \text{noise}$

Known input X

Model

$M(F_k(X))$

Hypothetical Key k

$D \rightarrow \text{Values}$
Introduction

Masking countermeasure

Device

Model

Known input X

Secret key $k^* \oplus r$

Hypothetical Key k

D

$L(F_{k^*}(X)) + noise$

$M(F_k(X))$

Values

KDA as a Higher-Order Side-Channel Distinguisher

Slide 6 of 27
Logic motivation of this work

- Linear Discriminant Analysis (LDA) was used for first-order dimensionality reduction. (@ CHES 2008 by Standaert et al.)
- LDA was used as first order distinguisher. (@ RFIDsec 2016 by Mahmudlu et al.)
- Kernel Discriminant Analysis (KDA) was successfully used for dimensionality reduction (or POI selection) in higher-order implementation. (@ CARDIS 2016 by Cagli et al.)
- KDA is proposed as higher-order distinguisher in this work.

References

Masking countermeasure (boolean masking)

- Sensitive value is to split into several shares
 \[s = r_0 \otimes r_1 \otimes ... \otimes r_d \]

- The whole leakages are \(l = (l_0, l_1, ..., l_d) \) with
 \[l_0 = L_0 \circ (s \oplus r_1 \oplus ... \oplus r_d) + \varepsilon_0 \]
 \[l_i = L_i \circ (r_i) + \varepsilon_i, \quad \text{for } 1 \leq i \leq d. \]
Higher-order DPA

\[R^{(d+1)\ell} \xrightarrow{CF} R^{\ell^{d+1}} \xrightarrow{D} k^* \]
Preliminary

Linear discriminant analysis

- LDA seeks the directions on that the labeled data have max ratio of between-cluster scatter and within-class scatter.
 - LDA is used as reduction tool in profiled-analysis in SCA.
 - Based on the ratio of between-cluster scatter and within-class scatter, it can distinguish the correct key hypothesis and wrong ones.
Linear discriminant analysis with kernels

$R^U \xrightarrow{\Phi} \mathcal{F} \xrightarrow{LDA} R^C$

KDA
Kernel discriminant analysis

- KDA seeks the optimal directions in a non-linear space.
 - KDA is used as dimensionality reduction tool in higher-order profiled-analysis in SCA.
 - The eigenvectors with largest eigenvalues are selected in the dimensionality reduction.
Methodology

Natural common ground

\[R^{(d+1)} \ell \xrightarrow{CF} R^{\ell^{d+1}} \xrightarrow{D} k^* \]

\[R^U \xrightarrow{\Phi} F \xrightarrow{LDA} R^C \]

KDA as a Higher-Order Side-Channel Distinguisher
Basic idea of KDA distinguisher

- If key hypothesis is correct, the partition of the whole traces based on the intermediate value corresponds with the real partition.
- In this case, it is easy to find the max ratio of between-cluster distance and inner-cluster distance.
- Otherwise, the clusters are difficult to separate.
Detailed procedure of KDA distinguisher

- For each key hypothesis $k \in \mathcal{K}$, do the following:
 - Calculate the intermediate value $z_i = F_k(x_i)$ for each plaintext.
 - Map z_i to a power model prediction m_i, given by $M(z_i)$.
 - Compute the between-class scatter matrix \mathbf{M} and the within-class scatter matrix \mathbf{N}, and regularize \mathbf{N} by $\mathbf{N} = \mathbf{N} + \mu \mathbf{I}$.
 - Eigen-decompose the matrix $\mathbf{N}^{-1} \mathbf{M}$. Return the largest eigenvalue as the distinguisher score D_k for k.
- Rank the pairs (k, D_k) according to D_k.
- Output the key hypothesis k with the largest D_k as the best guess on the true subkey.
Methodology

Theoretical Rationale

- The effectiveness of the implicit projection.
- The effectiveness of LDA as a distinguisher in the first-order scenario.
Methodology

Experimental Validation

- Real traces from DPA contest v4 (for second-order analysis).
 - Attack target: XOR result of masked S-box output and masked value of next sub-plaintext in RSM scheme.
- Simulated multivariate leakages (for second-order and third-order analysis).
 - Attack target: XOR result of random shares.
- Kernel function (might not be optimal)
 - The kernel function is $K(x, y) = (x \cdot y)^{d+1}$.
 - Regularization factor $\mu = 100,000$
Methodology

KDA on second-order simulated masked implementation with $\sigma = 1$.

Second-order KDA distinguisher key recovery

- Correct key candidate
- Wrong key candidates

KDA distinguisher score vs. Attack sample
Methodology

KDA on second-order simulated masked implementation with $\sigma = 1$.

![Graph showing the comparison between Second-order KDA and Second-order KDA (LSB model). The x-axis represents the attack sample, and the y-axis represents the guessing entropy. The graph illustrates the performance of both methods over the attack sample.]
Methodology

Second-order with KDA on DPA v4

The graph shows the Guessing entropy against the Attack sample. The red line represents the Second-order KDA, indicating a significant reduction in entropy as the number of attack samples increases.
Methodology

Third-order with KDA on simulated masked implementation with $\sigma = 0.01$.

![Graph showing guessing entropy against attack sample numbers with a line labeled Third-order KDA.](image)
Discussions

Computation Complexity

- **Time Complexity:**
 - Classical higher-order DPA: $O(N^{d+1})$.
 - KDA method: $O(N^2(N + (d + 1)\ell))$.

- **Space Complexity:**
 - Classical higher-order DPA: N^{d+1}.
 - KDA method: $2N^2$.
Discussions

Power Model

- Classical higher-order DPA: Standard proportional power models.
- KDA method: Flexible clustering power models.
Limitations and Possibilities

- Classical higher-order DPA using the ‘normalised product’ combining function with Hamming weight outperforms the KDA.
- It is interesting to deploy the KDA distinguisher in scenarios where higher order correlation DPA is likely to struggle.
Conclusions and Future Perspectives

Conclusions

- Extended KDA for application as distinguisher in masked implementation.
- Showed natural common ground between classical higher-order DPA and KDA.
- Reasoned about the soundness of a KDA-based distinguisher from theoretical perspective and empirically.
- Analyzed the substantial advantages of KDA over higher-order DPA on complexity and power model.
Conclusions and Future Perspectives

Future Perspectives

- Optimizing the parameters such as regularization factor.
- Exploring other kernel functions besides the polynomial function.
- Combining clustering power model in CHES 2015 proposed by Whitnall et al.

- Whitnall, C., Oswald, E. Robust profiling for DPA-style attacks. CHES 2015. 3-21.
Thank you for listening!

Full version available at https://eprint.iacr.org/2017/1051