Leakage Bounds for Gaussian Side Channels

Thomas Unterluggauer¹, Thomas Korak¹, Stefan Mangard¹, Robert Schilling¹, Luca Benini², Frank K. Gürkaynak², and Michael Muehlberghuber²,

¹ IAIK, Graz University of Technology
² Integrated Systems Laboratory, ETH Zürich

14. November 2017
Content

- Side-channel attacks threaten embedded devices
- Leakage-resilient schemes offer bounded leakage
- Challenge: specify leakage of underlying primitive
- This work: new approach to quantify leakage under a single data input

- Mutual information in multivariate leakages: capacity of n-to-m communication channels
- Channel capacity: (multivariate) SNR in m POIs
- Averaging N traces: SNR increases $\sim N^m$
- Practical verification: KECCAK-$f[400]$ on ASIC
Motivation

- Key update inherently prevents DPA
- Total leakage is bounded given λ-bit leakage of F
- Practical question: what is the value of λ?
Leakage Quantification

Attacker tries to learn x from l_x

Quantify information about x in l_x

- Mutual information
 - $MI(X, L_x) = H[X] - H[X | L_x]$
Channel Model

- Channel H: leakage behavior of implementation
- Linear $m \times n$ channel matrix H:
 - $l_x = Hx + \nu$
- Secret state x: $n \times 1$ vector (for n-bit state)
- Leakage trace l_x: $m \times 1$ vector (for m POIs)
- Noise ν: $m \times 1$ vector
Channel Capacity

- Maximize mutual information between x and l_x
 - Channel capacity $C = \max_{p(X)} MI(X, L_x)$
- Similar to Multi-Input Multi-Output (MIMO) channels
 - Wireless communication: n senders, m receivers
Capacity of MIMO Channels

- Capacity of MIMO channel (fixed H):
 \[
 C = \max_{\Sigma_x: \text{tr}(\Sigma_x) = P} \log_2 \left| I_m + H \Sigma_x H^H \right|
 \]

- $n \times n$ signal covariance matrix Σ_x

- Gaussian white noise with $\sigma^2 = 1$

- Side channels:
 - No power constraint P
 - Real values, e.g., power, no complex numbers
 - Noise correlations and different variances
Capacity of Gaussian Side Channels (1)

- Capacity of Gaussian Side Channels

\[C = \max_{p(X)} \text{MI}(X, L_x) = \frac{1}{2} \log_2 \left| \mathbf{I}_m + \Sigma^{-1}_\nu \mathbf{H} \Sigma_x \mathbf{H}^H \right|. \]

- \(m \times m \) noise covariance matrix \(\Sigma_\nu \)
Capacity of Gaussian Side Channels (2)

$$C = \frac{1}{2} \log_2 |\mathbf{I}_m + \Sigma_{\nu}^{-1}\mathbf{H}\Sigma_x\mathbf{H}^H|$$

- Channel matrix \mathbf{H} is typically unknown...
- Profile side channel: multivar. Gaussian distribution
 - Templates: $(\mu_i, \Sigma_{\nu,i})$ for all possible states x_i
 - Independent noise: estimate Σ_{ν} from $\Sigma_{\nu,i}$
 - Means μ_i give Σ_y (corresponding to $y = \mathbf{H}x$)
 - $\Sigma_y = \mathbf{H}\Sigma_x\mathbf{H}^H$
Leakage from Gaussian Side Channels

- Channel capacity: $C = \frac{1}{2} \log_2 |I_m + \Sigma^{-1}_\nu \Sigma_y |$
- Multivariate SNR: $\Sigma^{-1}_\nu \Sigma_y$
 - Reflects correlations in signal and noise
 - Device- and measurement-specific
- Univariate leakage:
 - $C = \frac{1}{2} \log_2 \left(1 + \frac{\sigma_y^2}{\sigma_\nu^2} \right) = \frac{1}{2} \log_2 \left(1 + SNR \right)$
Averaging Attacker
Averaging Attacker

- Attackers observe the same operation multiple times
 - E.g., decryption of an FPGA bitfile
- Average N leakage traces 1_x to remove noise
 - Noise covariance changes: $\overline{\Sigma}_{\nu} = \frac{1}{N} \Sigma_{\nu}$
 - Channel capacity increases:

$$C = \frac{1}{2} \log_2 \left| I_m + N \cdot \Sigma_{\nu}^{-1} \Sigma_y \right|$$
Estimated Attack Complexity

- Averaging a large number of traces
 - \(C \approx \frac{1}{2} \log_2 (1 + N^m |\Sigma^{-1}_\nu \Sigma y|) \)

- Scalar, single-trace \(SNR_m = |\Sigma^{-1}_\nu \Sigma y| \)

- Leakage proportional to \(N^m \)

- Number of averaged traces \(N \) reflects attack complexity
 - Tool for both attackers and designers
Experimental Evaluations
Experimental Evaluations

- Implementation of KECCAK-\(f[400]\)-based ISAP
 - Leakage-resilient authenticated encryption
 - Specifies leakage bounds for 128-bit security

- Two kind of evaluations:
 - Verify soundness of leakage bounds
 - Evaluate MI and channel capacity on hardware
 - Estimate security of ISAP implementation
Evaluation Hardware: FULMINE
Methodology

- Creation of multivariate Gaussian power templates
 - 5- and 8-bit parts of 400-bit KECCAK- $f_{[400]}$ state
 - Remaining state held constant
- Training phase: 1400 measurements per class
- Choice of POIs:
 - Points of highest variance
 - Maintain a certain minimum distance
 - Register and combinatorial activity
Capacity and Mutual Information (32 classes)
Capacity and Mutual Information (256 classes)

- Side-Channel Capacity [bits]
- 1st-order success rate
- Averaged Traces

- Bound 1 POI
- Bound 5 POI
- Bound 10 POI
- MI 1 POI
- MI 5 POI
- MI 10 POI

Averaged Traces

Thomas Unterluggauer, Graz University of Technology
14. November 2017
Security Estimation of ISAP

- Large state size
 - 400-bit KECCAK-$f[400]$ state
 - Template building infeasible
- $SNR_m = |\Sigma_{\nu}^{-1} \Sigma_{y}|$ is relevant for leakage quantification
 - SNR_m determined for 5- and 8-bit templates
 - Estimation for larger state: security margin γ

\[N = \left(\frac{2^{2S} - 1}{\gamma \cdot SNR_m} \right)^{1/m} \]
Security of ISAP on FULMINE ($\gamma = 100$)

![Bar chart showing the minimum attack complexity for different numbers of POIs and bit strengths.]

- **Number of POIs**:
 - 100
 - 30
 - 20
 - 10
 - 5

- **Minimum Attack Complexity**:
 - 10^2 to 10^{35}

- **Bit Strengths**:
 - 400 bits
 - 272 bits
 - 128 bits

Thomas Unterluggauer, Graz University of Technology
14. November 2017
Conclusion

- Leakage quantification is of ongoing interest
- Method to quantify the leakage from Gaussian side channels
 - Capacity of n-to-m communication channels
- Leakage bounded by physical property: SNR
- Averaging N traces: SNR increases $\sim N^m$
 - Tool to estimate the attack complexity
- Practical verification on ASIC: KECCAK-$f[400]$

Thomas Unterluggauer, Graz University of Technology
14. November 2017
Leakage Bounds for Gaussian Side Channels

Thomas Unterluggauer¹, Thomas Korak¹, Stefan Mangard¹, Robert Schilling¹, Luca Benini², Frank K. Gürkaynak², and Michael Muehlberghuber²,

¹ IAIK, Graz University of Technology
² Integrated Systems Laboratory, ETH Zürich

14. November 2017