Towards Sound and Optimal Leakage Detection Procedure

<u>A. Adam Ding</u>1, Liwei Zhang1, Francois Durvaux2, Francois-Xavier Standaert2, and Yunsi Fei1

- 1. Northeastern University, Boston, MA, USA
- 2. Universite catholique de Louvain, Belgium

Leakage Detection versus Identification

- Certification of crypto implementations' side-channel leakage.
- Identify how much (explorable)
 leakage exists -- stronger inference
 (e.g. Durvaux and Standaert 2016)
- Detect if any (generic) leakage exists

-- <u>TVLA framework</u>: make it sound and statistical optimal our aim here.

Test vector leakage assessment (TVLA)

- Apply a vector of univariate tests to
 - Every time point on the measurement trace
 - For leakage of intermediate variables
 - Device fails when at least one of the tests fails
- First proposed by Cryptography Research group at the 2011 NIST workshop

For t-test, leakage exists for TH=4.5

Some related work on TVLA

- T-test is the generic univariate test to use: (Mather et al. 2013)
- Higher-order/multivariate test in TVLA (Schneider and Moradi 2015 CHES)
- Question on the framework: How should we decide the overall detection (threshold) from the n_{L} tests on trace.
 - Balasch et al 2014: TH=5.0 for longer traces

Our proposals on TVLA

- Sound: decide the detection limit (threshold), changing with trace length n_L and sample size n_{tr} , to satisfy a fixed type I error rate α
- Statistical optimal: combine the n_L univariate tests using Higher Criticism (HC)

Issue with fixed threshold in TVLA

• T-test: Two groups A and B (fixed-vs-fixed, fixed-vs-random). Differences?

$$\widehat{s}_{i} = \frac{\overline{L}_{i,A} - \overline{L}_{i,B}}{\sqrt{\frac{\widehat{\nu}_{i,A}^{2}}{n_{A}} + \frac{\widehat{\nu}_{i,B}^{2}}{n_{B}}}},$$

- Reject null hypothesis (i.e., leakage exists) if $\max |\hat{S}_i| > 4.5$
- The type I error rate changes with n_L

Issue with fixed threshold in TVLA

- T-test: Reject null hypothesis (i.e., leakage exists) if $\max |\hat{S}_i| > TH$
- The type I error rate changes with n_L

n_L	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
TH = 4.5	0.00068	0.0068	0.0661	0.4957	0.9987
TH = 5	0.000057	0.00057	0.0057	0.0557	0.4363

A safe device will fail if n_L=1million

TVLA threshold through p-values

• This is mini-p procedure: $\min|p_i| < TH_p$ • $TH_p = 1 - (1 - \alpha)^{1/n_L}$

TVLA threshold through p-values

•T-test:

$$\widehat{s}_{i} = \frac{\overline{L}_{i,A} - \overline{L}_{i,B}}{\sqrt{\frac{\widehat{\nu}_{i,A}^{2}}{n_{A}} + \frac{\widehat{\nu}_{i,B}^{2}}{n_{B}}}}, \quad p_{i} = 2 \times \left(1 - \text{CDF}_{t}(\widehat{s}_{i}, \widehat{\nu}_{i})\right),$$

• CPA (
$$\rho$$
-test) $\hat{\rho}_i = \operatorname{Corr}(L_i, V).$

$$\widehat{s}_i = \frac{1}{2} \ln \left(\frac{1 + \widehat{\rho}_i}{1 - \widehat{\rho}_i} \right) \sqrt{n_{tr}}, \quad p_i = 2 \times \left(1 - \text{CDF}_{N(0,1)}(|\widehat{s}_i|) \right)$$

 Can work with p-values no matter what univariate test is used.

Sound mini-p threshold for t-test in TVLA

(b) Threshold values TH under fixed type I error rates.										
n_L	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}			
$\alpha = 0.001$	4.417	4.892	5.327	5.731	6.110	6.467	6.806			
$\alpha = 0.01$	3.889	4.416	4.891	5.326	5.730	6.109	6.466			

•Choose an α value, then find the threshold for mini-p procedure.

Using Higher Criticism in TVLA Mini-p is not statistical optimal, replace with Higher Criticism (HC): compare the p-values to uniform distribution.

Leakage Detection Procedure: HC

 HC leakage detection procedure is optimal in high-dimensional setting (long trace here).

Optimality of HC Leakage Detection

- Model $L_i = \tilde{V}\delta_i + r_i, \quad i = 1, \cdots, n_L$
- Model SNR = $Var(V\delta_i)/Var(r_i) = \delta_i^2$
- Test statistic $\hat{S}_i \rightarrow N(\sqrt{n_{tr}\delta_{s_i}^2}, 1)$
- Test SNR $n_{tr}\delta_{s_i}^2$ with $\delta_{s_i}^2$ equal to or smaller than δ_i^2
- •HC optimal combination given test SNR
- (optimal test for Gaussian mixture)

HC versus mini-p (better when multiple signals)

- Given q proportion each SNR Δ^2 .
- Sparsity $\beta = -\log(q)$, signal $\gamma = \Delta^2/2\log(n_L)$

More traces n_{tr} Stronger signal, detection when exceed **Numerical Examples**

- Simulation of 8-bit AES-128 Hamming Weight leakage with Gaussian noise.
 n_L=496
- Implementation of unprotected AES on a SASEBO-W board. $n_L=50,000$.
- Implementation of masked AES on a SASEBO-GII board. Detection of 2^{nd} order (bivariate) centered-product leakage. n_w=3125, n_L=(n_w²+n_w)/2

Numerical Examples: Simulation

- •(i) t-test with fixed-vs-random plaintexts
- •(ii) t-test with fixed-vs-fixed plaintexts
- (iii) p-test with random plaintexts
- (i) and (ii) <u>non-specific tests</u>, <u>non-sparse</u> signals. HC versus mini-p: higher detection power.
- (iii) specific test, sparse signal. HC versus mini-p: same.

Numerical Examples: Simulation

Numerical Examples: Real implementations

- p-test with random plaintexts
- Unprotected AES: HC a bit better than mini-p. (Signals sparse and strong)
- Masked AES: HC much better than mini-p. (Multiple signals)

Numerical Examples: Unprotected AES

Numerical Examples: Masked AES (2nd-order)

Discussion

- Usage: leakage detection
 - Pass if the optimal HC procedure does not detect any for the specified number of traces.
 - If detected, explorable leakage? (identify/quantify, may need more traces.)
- Issue and future work:
 - Assumption of independence across different time points on the trace.
 - Use generalized HC (JASA2017) to deal with dependence.

Summary

- Improve the TVLA framework
- Sound detection limit by Type I error rate
- HC procedure (statistical optimal) has better detection power.

Question?

 Acknowledgments: NSF funding: CNS-1314655, CNS-1337854, CNS-1563697; European Commission funding: H2020 project 731591 and the ERC project 724725.